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SUMMARY

An overview of the unusual stabilized ®nite element method and of the standard Galerkin method enriched with
residual free bubble functions is presented. For the ®rst method a concrete model problem illustrates its
application in advective±diffusive±reactive equations and for the second method it is shown how static
condensation of residual free bubbles gives rise to mass lumping and selective reduced integration, which are
viewed as numerical tricks and can now be derived by the standard Galerkin method without tricks. # 1998 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Stabilized methods and other non-standard techniques of discretization were developed to deal with

intricate physical problems governed by singularly perturbed equations and=or dif®culties in

approximating systems of equations, etc. The idea then was to develop methods that would not

completely change the structure of a simple ®nite element code based on piecewise polynomials of

equal-order approximation for all variables. Surprisingly the idea is effective and can be extended to a

variety of applications (see References 1±10 and references cited therein).

Wishing to further understand stabilized ®nite element methods and other non-standard Galerkin

®nite element methods, we have revisited the Galerkin method using richer subspaces other than

piecewise polynomials. The idea is to enlarge the space of piecewise polynomials with functions

de®ned elementwise, such that improved accuracy and stability are achieved, which are also goals

shared by stabilized methods. Noting ®rst that streamline diffusion can be obtained by this process,11

a theory was developed to show that virtual bubbles can be constructed to reproduce stabilized

methods in a variety of applications and based on piecewise polynomials of all orders.12 The

questions then were as follows: (i) Is there a family of stabilized methods associated with the
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Galerkin method enriched with bubbles? Which one is it? (ii) Is there a systematic procedure to

construct these virtual bubbles so that improved discretizations are developed regardless of how those

may look at the end? (In other words, dropping the requirement to obtain a stabilized method, let us

pursue ultimately accurate and stable methods.)

This paper deals with these two questions that lead to parallel approaches (not necessarily the same

in general). First we show that if we enrich piecewise linears by a space of bubble functions spanned

by a single basis function on each element, then we are led to unusual stabilized ®nite element

methods (US-FEMs for short). This is discussed in Section 2. The other approach is to select a space

of bubble functions that is spanned by the exact solution minus its piecewise linear contribution on an

element. This is the space of residual free bubbles that was suggested in References 13±15 and

crystallized in References 16±18. An approach similar to the latter one was developed independently

in Reference 19 motivated by physical arguments and the equivalence to the residual free bubbles

idea is presented in Reference 20. We present the residual free bubbles idea and some of its

applications in Section 3.

2. US-FEM: THE UNUSUAL STABILIZED FINITE ELEMENT METHOD

Let L denote a linear differential operator and consider the problem of ®nding a scalar function u in a

smooth domain O with boundary G such that

Lu � f in O; u � g on G � @O
for given smooth functions f and g. The standard Galerkin method for this problem consists of ®nding

uh such that

a�uh; vh� � �Luh; vh� � � f ; vh� 8vh; �1�
where (�, �) denotes the L2(O) scalar product. Here uh and vh are members of the space spanned by

piecewise linear polynomials plus bubble functions, i.e.

uh � u1 � ub; �2�
where the bubble functions are spanned by one basis function jK on an element K,

ub � cKjK ;

and satisfy

ub � 0 on @K:

We ®rst consider what method (1) implies for the reduced space of polynomials. In other words,

we wish to understand what the effect of ub on the u1 part of the solution is.

This question is addressed using what is termed in the ®nite element literature as static

condensation, which consists of ®rst taking vh � jK on K in equation (1) (zero elsewhere):

a�u1 � ub;jK �K � � f ;jK �K ;
a�u1;jK �K � a�ub;jK �K � � f ;jK �K ;

�Lu1;jK�K � a�cKjK ;jK �K � � f ;jK �K ;
cKa�jK ;jK �K � ÿ�Lu1 ÿ f ;jK �K :

Thus the unknown coef®cient of the bubble can be computed from

cK �
�Lu1 ÿ f ;jK�K

a�jK ;jK �K
: �3�
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The second part of static condensation is to use vh � v1 in (1):

a�u1 � ub; v1� � � f ; v1�;
a�u1; v1� � a�ub; v1� � � f ; v1�;

a�u1; v1� �
P
K

�ub; L�Kv1�K � � f ; v1�;

where L�K is the adjoint operator associated with L with boundary condition

ub � 0 on @K:

Substituting ub � cKjK with cK given by (3) yields

a�u1; v1� ÿ
P
K

�Lu1 ÿ f ;jK �K
a�jK ;jK �K

�jK ; L�Kv1�K � � f ; v1�: �4�

This is the method suggested by static condensation of one bubble.

At this point we may ask to what kind of method this single-bubble method is related. If we bypass

the de®nition of the bubble shape functions jK, we wish to consider a simpli®cation of (4) in the form

a�u1; v1� ÿ
P
K

�Lu1; tL�Kv1� � � f ; v1� ÿ
P
K

� f ; tL�Kv1�K ;

where t is a stability constant.

These are unusual stabilized ®nite element methods (US-FEMs, suggested in Reference 12 and

developed in References 21 and 22) that are consistent methods and more stable than Galerkin

methods. As a matter of fact, if L is the ®rst-order operator of convection, then clearly this method

adds stability to the Galerkin method in the same way as the Galerkin least-squares method does.

However, for zeroth- and second-order operators, bubbles seem to prompt subtraction of a square

term from the Galerkin term. In this case we need to check whether stability is improved on a case-

by-case basis. We have checked that this form of stabilized method is effective for advective±

diffusive±reactive equations and shown that these methods lead to convergence for usual elements.

Let us start with this model. We consider the problem: ®nd a scalar-valued function u(x) de®ned in

O � R2 such that

su� a � Huÿ kDu � f in O; �5�
u � 0 on G � @O; �6�

where a is a given solenoidal velocity ®eld (i.e. H � a� 0), s and k are given positive constants and

f (x) is a given source function.

Here we have

Lu � su� a � Huÿ kDu

and by substituting this particular L operator in (1) we have the standard Galerkin method: ®nd uh

such that

�suh; vh� � �a � Huh; vh� � �kHuh;Hvh� � � f ; vh� 8vh:

We decompose the solution as before to give

uh � u1 � ub

and using static condensation we get (see equation (3))

cK � ÿ
�su1 � a � Hu1 ÿ f ;jK �K
skjk2

0;K � kkHjk20;K
:
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In the second part of static condensation we are led to the method given by

a�u1; v1� �
P
K

cK �jK ; L�Kv1�K � � f ; v1�

and therefore by substituting the expression for cK we have

a�u1; v1� ÿ
P
K

�su1 � a � Hu1 ÿ f ;jK�K
skjk20;K � kkHjk2

0;K

�jK ; sv1 ÿ a � Hv1�K � � f ; v1�: �7�

We wish to consider the following US-FEM: ®nd u1 such that

a�u1; v1� ÿ
P
K

�Lu1; tL�v1�K � � f ; v1� ÿ
P
K

� f ; tL�v1�K

or substituting: ®nd u1 such that

B�u1; v1� � F�v1� 8v1; �8�
where

B�u; v� � �su; v� � �a � Hu; v� � �kHu;Hv� ÿ P
K2ch

�su� a � Huÿ kDu; tK �svÿ a � Hvÿ kDv��K ; �9�

F�v� � � f ; v� ÿ P
K2ch

� f ; tK �svÿ a � Hvÿ kDv��K : �10�

The stability constant t is given by the formulae

tK �
hK=2jajp; PeK � 1;

h2
K=�sh2

K � bK �; PeK < 1;
PeK �

2jajphK

sh2
K � k

;

(

bK �
jajphK ; jajphK � k;

k; jajphK < k;
jajp �

PN
i�1 jai�x�jp

� �1=p

; 14 p <1;
max
i�1;N
jai�x�j; p � 1:

8><>:
8><>:

Remarks

1. In the case in which s� 0 we have an advective±diffusive equation and the method above

reduces to SUPG introduced by Hughes and Brooks.1

2. In the case in which a� 0 the method above reduces to the method studied by Franca and Farhat

in Reference 21, where a convergence analysis is presented (for piecewise linears).

3. This method deals with the more general possibility of having differential operators of orders

two, one and zero present in the same equation. This is of interest in applying these methods to

the transport equations of turbulent quantities (such as the ones found in the k±e model), to

applications involving chemical reactions, etc.

4. We would like to reiterate that a single bubble in each element prompts unusual stabilized

methods in that instead of adding a least-squares form of the Euler±Lagrange equations to the

Galerkin method, we subtract a term of the typeP
K2ch

t�Luÿ f ; L�Kv�K ;

where L is the differential operator associated with the scalar PDE and L�K is its adjoint with

zero Dirichlet boundary condition in each element. These unusual methods keep the desired

additional stability characteristics of Galerkin least-squares methods and do have a non-trivial

counterpart within the framework of the Galerkin method using `virtual' bubbles.
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3. RESIDUAL FREE BUBBLES

This seems to be a very promising approach in that a systematic derivation of methods is now

possible. To de®ne residual free bubbles, let us consider the standard Galerkin method for

Lu � f in O; u � 0 on G � @O:
Then we wish to ®nd uh such that

a�uh; vh� � �Luh; vh� � � f ; vh� 8vh: �11�
Here uh and vh are piecewise polynomials plus bubble functions, i.e.

uh � u1 � ub; �12�
where the bubble functions satisfy the differential equations strongly, i.e.

Lub � ÿ�Lu1 ÿ f � in K; �13�
subject to zero Dirichlet boundary condition on the element boundary, i.e.

ub � 0 on @K: �14�
Problems given by equations (13) and (14) are addressed by solving instead

Lji;K � ÿLci;K in K; �15�
ji;K � 0 on @K; �16�

where the ci;K are the local basis functions for u1 and

Ljf ;K � f in K; �17�
jf ;K � 0 on @K: �18�

Thus, if u1jK �
Pnen

i�1 ci;Kci;K , then

ubjK �
Pnen

i�1

ci;Kji;K � jf ;K ; �19�

with the same coef®cients ci;K .

As before we ask the question: what does method (1) imply for the reduced space of polynomials?

(or, what is the effect of ub on the u1 part of the solution?).

The answer is to use static condensation (as before)Ð®rst v � vb;K on K (zero elsewhere):

a�u1 � ub; vb;K �K � � f ; vb;K �K : �20�
However, this equation is satis®ed automatically owing to our choice of bubbles. Indeed, this

equation is the variational equation for

Lub � ÿ�Lu1 ÿ f � in K; �13�
using v � vb;K on K (zero elsewhere) as test functions.

Second part of static condensationÐuse v � v1 in (11):

a�u1 � ub; v1� � � f ; v1�;
a�u1; v1� � a�ub; v1� � � f ; v1�:

This is the method suggested by static condensation. Using residual free bubbles, the second-term

modi®cation due to the bubbles is computed after solving equations (6)±(9).
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Let us consider two examples of this approach to show that mass lumping and selective reduced

integration are tricks that can be `explained' by residual free bubbles.

The presentation now follows.17 The ®rst example is: ®nd a scalar-valued function u(x) de®ned in

O � R such that

suÿ ku00 � f in O; �21�
u � 0 on G � @O; �22�

where s and k are given positive constants and f (x) is a given source function. Here

Lu � suÿ ku00

and the residual free bubble problems given by (15)±(18) are

sji;K ÿ kj00i;K � ÿsci;K in K; �23�
ji;K � 0 on @K; �24�

where the ci;K are the basis functions for u1 and have second derivative zero inside each element and

sjf ;K ÿ kj00f ;K � f in K; �25�
jf ;K � 0 on @K: �26�

The solutions of (23)±(26) with respect to the local co-ordinate x 2 �0; hK � are

j1;K �x� �
sinh� ������������s=k�p �hK ÿ x��

sinh� ������������s=k�p
hK �

ÿ 1ÿ x
hK

� �
;

j2;K �x� �
sinh� ������������s=k�p

x�
sinh� ������������s=k�p

hK �
ÿ x

hK

;

jf ;K �x� � ÿ
f

s
�j1;K�x� � j2;K�x��

for piecewise constant loads.

The Galerkin method given by the second step of static condensation is

a�u1; v1� � a�ub; v1� � � f ; v1� �27�
and in this case

�su1; v1� � �ku01; v01� �
P
K

�sub;K ; v1�K � � f ; v1�: �28�

If we substitute the expression for ubjK �
Pnen

i�1 ci;Kji;K � jf ;K with the exact results above, then we

are led to a system of equations for the unknown constants ci;K .

If we write the system of equations for a uniform mesh, then a typical interior node satis®es (after

some algebra)

Ah

ÿcIÿ1 � 2cI ÿ cI�1

h

� �
� BhcI � Ch f ;

where

Ah � k

������������s=k�p
hK

sinh� ������������s=k�p
hK �

; Bh � 2
������������
d�sk�

p
tanh

1

2

��������
s
k

� �r
hK

� �
; Ch �

1

s
Bh:
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This is the method implied by the residual free bubbles approach. The method will give nodal exact

values for k, s, f and h. For small
������������s=k�p

hK we have

Ah � k; Bh � sh; Ch � h;

simplifying the method to

k
ÿcIÿ1 � 2cI ÿ cI�1

h

� �
� shcI � hf ; �29�

which is identical in form to the equations produced by the standard Galerkin method using piecewise

linears with full integration on the second-derivative term and `mass lumping' in the zeroth-order

term.

The presentation now follows Reference 18. The second example is developed to show the

appearance of selected reduced integration from residual free bubbles. The Timoshenko beam model

is governed by the differential equations (after non-dimensionalization)

ÿy00 ÿ 1

e2
�w0 ÿ y� � 0 in O; ÿ 1

e2
�w00 ÿ y0� � f in O; �30�

where a prime denotes differentiation with respect to x 2 O � �0; 1�, y and w are the rotation and

displacement variables respectively, f is the load and e is a non-dimensional parameter proportional to

the beam thickness.

To (31) we append the clamped boundary conditions (other boundary conditions may be used

without major changes in what follows)

w�0� � w�1� � 0; y�0� � y�1� � 0: �31�
The variational formulation corresponding to (30) and (31) is given by: ®nd fy;wg 2 H1

0 �O�2 such

that

�y0;c0� � 1

e2
�w0 ÿ y; v0 ÿ c� � � f ; v� 8fc; vg 2 H1

0 �O�2; �32�

where we use the notation � f ; g� � �O fg dO.

Consider a partition of O into non-overlapping elements in the usual way. Then the exact solution

of our problem can be decomposed into

y � y1 � yb; w � w1 � wb; �33�
where y1 and w1 are spanned by the standard continuous piecewise linears of ®nite element methods

and yb and wb are assumed to satisfy the following differential equations in each element K:

ÿy00b ÿ
1

e2
�w0b ÿ yb� � ÿ ÿy001 ÿ

1

e2
�w01 ÿ y1�

� �
;

ÿ 1

e2
�w00b ÿ y0b� � ÿ ÿ

1

e2
�w001 ÿ y01� ÿ f

� �
;

�34�

subject to the boundary conditions

yb � wb � 0 on @K: �35�
Equations (34) can be rewritten as (note that y001 � w001 � 0 in K)

ÿe2y00b � yb ÿ w0b � w01 ÿ y1; y0b ÿ w00b � ÿy01 � e2f : �36a; b�
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From (36a)

yb ÿ w0b � w01 ÿ y1 � e2y00b

and combining with (36b) we get

y000b � f in K: �37�
Integrating three times (with respect to the local variable in the element, x 2 �0; hK �, hK � xi�1 ÿ xi,

x � xÿ xi) and assuming a piecewise constant load f, and for notation's sake dropping the subscripts

for h and f (nowhere do we need to assume that hK is constant in what follows), we get

yb�x� �
x3

6
f � c1

x2

2
� c2x� c3: �38�

Applying the boundary conditions yb�0� � yb�h� � 0 above gives

yb�x� �
x
6

f �x2 ÿ h2� � c1

x
2
�xÿ h�: �39�

Using this expression in (36a), after one integration we get

wb�x� �
�x

0

y1�t� dt ÿ w1�x� ÿ e2 f

6
�3x2 ÿ h2� � c1

2
�2xÿ h�

� �
� f

6

x4

4
ÿ x2

2
h2

 !
ÿ c1

12
x2�3hÿ 2x� � c4:

�40�

Applying the boundary conditions wb�0� � wb�h� � 0 in (40), we get expressions for the remaining

constants c1 and c4 and the expressions for the residual free bubble functions are then given by

yb�x� � f
x
6
�x2 ÿ h2� � hx

4
�hÿ x�

� �
� 1

e2 � �h2=12�
x�xÿ h�

2
y1

h

2

� �
ÿ w1�h� ÿ w1�0�

h

� �
; �41�

wb�x� � x 1ÿ x
2h

� �
y1�0� �

x2

2h
y1�h� �

x
h
�w1�0� ÿ w1�h��

ÿ x e2 ÿ x2

6
� hx

4

 !
1

e2 � �h2=12� y1

h

2

� �
ÿ w1�h� ÿ w1�0�

h

� �
ÿ hf

2

� �
�42�

� f x2

2
ÿe2 � x2

12
ÿ h2

6

 !
:

If we take the test functions c�c1 and v � v1, where c1 and v1 are spanned by continuous

piecewise linears, then using decomposition (33) the variational formulation (32) can be rewritten as

�y01;c01� �
1

e2
�w01 ÿ y1; v01 ÿ c1� ÿ � f ; v1� �

1

e2
�w0b ÿ yb; v01 ÿ c1� � 0; �43�

where, by integration by parts, we used that

�y0b;c01� �
P
K

�y0b;c01�K �
P
K

��yb;c
0
1�@K ÿ �yb;c

00
1�K � � 0:

166 L. P. FRANCA ET AL.

INT. J. NUMER. METH. FLUIDS, VOL. 27: 159±168 (1998) # 1998 John Wiley & Sons, Ltd.



Note that (43) consists of the Galerkin method for equal-order piecewise linear approximations for

y and w (without tricks, using full integration) plus a `perturbation term' that we need to compute

based on the bubble functions given by (41) and (42). First by (41) and (42) we compute

w0b ÿ yb � y1�0� �
x
h
�y1�h� ÿ y1�0�� ÿ

w1�h� ÿ w1�0�
h

ÿ e2

e2 � �h2=12� y1

h

2

� �
ÿ w1�h� ÿ w1�0�

h

� �
� e2f

h

2
ÿ x

� �
:

�44�

Note also that

w01 ÿ y1 �
w1�h� ÿ w1�0�

h
ÿ 1ÿ x

h

� �
y1�0� ÿ

x
h
y1�h�: �45�

Thus, summing (44) and (45), we get

w01 ÿ y1 � w0b ÿ yb � e2f
h

2
ÿ x

� �
ÿ e2

e2 � �h2=12� y1

h

2

� �
ÿ w1�h� ÿ w1�0�

h

� �
: �46�

Therefore, using (46), the variational formulation given by (43) reduces to

�y01;c01��
P
K

1

e2 � �h2
K=12�

w1�hK� ÿ w1�0�
hK

ÿ y1

hK

2

� �
; v01 ÿ c1

� �
K

� � f ; v1� �
P
K

fK xÿ hK

2
; v01 ÿ c1

� �
K

;

�47�

where we have introduced the subscripts on h and the piecewise constant load f. This can also be

rewritten as

�y01;c01� �
P
K

1

e2 � �h2
K=12� �w

0
1 ÿ Ry1; v01 ÿ c1�K � �f ; v1� �

P
K

fK xÿ hK

2
; v01 ÿ c1

� �
K

; �48�

where R stands for a reduced integration operator.

Formulation (48) was derived using full integration throughout and by construction its solution is

nodally exact. The ®nal form is identical to applying the following tricks to the standard variational

formulation.

(i) Use one-point reduced integration on the shear energy term.

(ii) Replace its coef®cient 1=e2 by 1=�e2 � �h2
K=12�� in each element.

(iii) Correct the right-hand side as in equation (48) for piecewise constant loads.

To emerge with this collection of `tricks' requires ingenuity and for the ®rst two tricks different

arguments have been given before by several authors.
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